\[\begin{array}{rl} {d C \over d t} \: = \: & D_x {\partial^2 C \over \partial x^2} \: + \: D_y {\partial^2 C \over \partial y^2} \: - \: v_x {d C \over d x} \: - \: v_y {d C \over d y} \: - \: R C \\ \\ & \mbox{where:} \\ & \ \ D_x \mbox{ is the hydrodynamic dispersion coefficient in the } x \mbox{ direction} \\ & \ \ D_y \mbox{ is the hydrodynamic dispersion coefficient in the } y \mbox{ direction} \\ & \ \ v_x \mbox{ is the advective transport or seepage velocity in the } x \mbox{ direction} \\ & \ \ v_y \mbox{ is the advective transport or seepage velocity in the } y \mbox{ direction} \\ & \ \ R \mbox{ is the reaction coefficient which takes into acount the linear} \\ & \ \ \ \ \mbox{equilibrium retardation factor and effective first order decay} \\ & \ \ \ \ \mbox{rate due to combined biotic and abiotic processes} \end{array}\]